
Marlin renderer
a successful fork and join the OpenJDK 9 project

Laurent Bourgès

github.com/bourgesl

FOSDEM 2016, Jan 30th

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 1 / 28

https://github.com/bourgesl/
https://github.com/bourgesl/

Outline

1 Context & History

2 How Marlin works ?

3 Marlin benchmarks

4 How to use Marlin ?

5 Demo

6 Marlin renderer tuning

7 Future work

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 2 / 28

https://github.com/bourgesl/

Context

Java2D is a great API (since 1997) to perform graphics rendering.

Antialiasing renderers = Graphics2D.draw/fill(Shape):

Ductus (closed-source) in Sun / Oracle JDK (jdk 1.2)
I sun.dc.DuctusRenderingEngine (native C code)

Pisces (open-source) integrated in OpenJDK (2007)
I java2d.pisces.PiscesRenderingEngine (java)

Status in 2013:

Ductus: faster but does not scale well (multi-threading)

Pisces: slower but scales better

GPU ? java2D pipelines (OpenGL, D3D...) provide only few
accelerated operations (or switch to glg2d)

JavaFX only for client applications (not server-side)

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 3 / 28

glg2d
https://github.com/bourgesl/

Marlin renderer = OpenJDK’s Pisces fork

March-Mai 2013: my first patchs to OpenJDK 8:
I Pisces patchs to 2d-dev@openjdk.java.net: too late
I small interest / few feedback

Andréa Aimé (GeoServer team) pushed me to go on:
I new MapBench tool: serialize & replay map rendering
I fork OpenJDK’s Pisces as a new open-source project

⇒ 01/2014: Marlin renderer & MapBench projects on github (GPL v2)
with only 2 contributors (Me and Andrea Aimé) !

https://github.com/bourgesl/marlin-renderer
I branch ’use Unsafe’: trunk
I branch ’openjdk’: in synch with OpenJDK9

https://github.com/bourgesl/mapbench

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 4 / 28

2d-dev@openjdk.java.net
https://github.com/bourgesl/marlin-renderer
https://github.com/bourgesl/mapbench
https://github.com/bourgesl/

Marlin & MapBench projects at github

Objectives:

faster alternative with very good scalability

improve rendering quality

Compatible with both Oracle & Open JDK 7 / 8 / 9

Very big personal work:

many releases in 2014: see releases

Test Driven Development:
I regression: MapDisplay (diff pisces / marlin outputs)
I performance: MapBench & GeoServer benchmarks (+ oprofile)

Important feedback within the GIS community: GeoServer (web),
gvSIG CE (Swing) providing complex use cases & testing releases

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 5 / 28

https://github.com/bourgesl/marlin-renderer/releases/
https://github.com/bourgesl/

Point cloud rendering in gvSIG CE

Marlin allows parallel rendering of large point clouds (100M):

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 6 / 28

https://github.com/bourgesl/

Marlin project on the web

Famous blog post (02.2014): Achieving Extreme GeoServer
Scalability with the new Marlin vector rasterizer

Marlin wiki: Benchmarks page

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 7 / 28

http://www.geo-solutions.it/blog/developerss-corner-achieving-extreme-geoserver-scalability-with-the-new-marlin-vector-rasterizer/
http://www.geo-solutions.it/blog/developerss-corner-achieving-extreme-geoserver-scalability-with-the-new-marlin-vector-rasterizer/
https://github.com/bourgesl/marlin-renderer/wiki/Benchmarks
https://github.com/bourgesl/

Marlin renderer back into OpenJDK 9

Late 2014: several mails to 2d-dev@openjdk.java.net

FOSDEM 2015: discussion with OpenJDK managers (Dalibor &
Mario) on how to contribute the Marlin renderer back

⇒ I joined the graphics-rasterizer project in march 2015 to contribute
Marlin as a new standalone renderer for OpenJDK9.

I worked hard (single coder) with Jim Graham & Phil Race
(reviewers) between march 2015 to december 2015 (4 big patches)

We proposed the ’JEP 265: Marlin Graphics Renderer’ in July 2015
and make it completed !

It is now integrated in OpenJDK9 b96 ⇒ Marlin even faster:
I Marlin 0.7: improve coordinate rounding arround subpixel center
I Marlin 0.7.2: improve large pixel chunk copies (coverage data)

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 8 / 28

2d-dev@openjdk.java.net
https://github.com/bourgesl/

My feedback on contributing to OpenJDK

Very interesting & many things learnt

License issue: OCA for all contributors, no third-party code !

Webrev process: great but heavy task:
I create webrevs (hg status, webrev.ksh with options)
I push on cr.openjdk.java.net/~<mylogin>/
I long discussions on mailing lists for my patches (50 mails)
I timezone issue: delays + no skype

Few Java2D / computer graphics skills = small field + NO DOC !

General:

CI: missing ’open’ multi-platform machines to perform tests &
benchmarks outside of Oracle

Funding community-driven effort ? support collaboration with
outsiders

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 9 / 28

cr.openjdk.java.net/~<mylogin>/
https://github.com/bourgesl/

How Java2D works ?

Java2D uses only 1 RenderingEngine implementation at runtime:

SunGraphics2D.draw/fill(shape)

AAShapePipe.renderPath(shape, stroke)
I aatg = RenderingEngine.getAATileGenerator(shape, at)

F Coverage mask computation (tiles) as alpha transparency [0-255]

I aatg.getAlpha(byte[] alpha, ...) to get next tile ...
I output pipeline.renderPathTile(byte[] alpha):

F MaskFill operations (software / OpenGL pipeline) on dest surface

1 RenderingEngine:

2 public static synchronized RenderingEngine getInstance ();

3 public AATileGenerator getAATileGenerator(Shape s,

4 AffineTransform at, ...);

5 AATileGenerator:

6 public int getTypicalAlpha ();

7 public void nextTile ();

8 public void getAlpha(byte tile[], ...);

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 10 / 28

https://github.com/bourgesl/

How Marlin works ? Pisces / Marlin pipeline

MarlinRenderingEngine.getAATileGenerator(shape, stroke...):

use shape.getPathIterator() ⇒ apply the pipeline to path elements:

Dasher (optional):
I generates path dashes (curved or segments)

Stroker (optional):
I generates edges arround of every path element
I generates edges for decorations (cap & joins)

Renderer:
I curve decimation into line segments
I addLine: basic clipping + convert float to subpixel coordinates
I determine the shape bounding box
I perform edge rendering into tile strides ie compute pixel coverages
I fill the MarlinCache with pixel coverages as byte[] (alpha)

MarlinTileGenerator:
I provide tile data (32x32) from MarlinCache (packed byte[])

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 11 / 28

https://github.com/bourgesl/

How Marlin works ? the AA algorithm

Scanline algorithm [8x8 supersampling] to estimate pixel coverages

= Active Edge table (AET) variant with ”java” pointers (integer-based)

sort edges at each scanline

estimate subpixel coverage and accumulate in the alpha row

Once a pixel row is done: copy pixel coverages into cache

Once 32 (tile height) pixel rows are done: perform blending & repeat !

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 12 / 28

https://github.com/bourgesl/

Marlin performance optimizations

Intially GC allocation issue:

Many growing arrays + zero-fill

Many arrays involved to store edge data, alpha pixel row ...

Value-Types may be very helpful: manually coded here !

RendererContext (TL/CLQ) = reused memory ⇒ almost no GC:

kept by weak / soft reference

class instances + initial arrays takes 512Kb

weak-referenced array cache for larger arrays

Use:

Unsafe: allocate/free memory + less bound checks

zero-fill (recycle arrays) on used parts only !

use dirty arrays when possible: C like !

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 13 / 28

https://github.com/bourgesl/

Marlin performance optimizations

Need good profiler: use oprofile + gather internal metrics

Fine tuning of Pisces algorithms:
I custom rounding [float to int]
I DDA in Renderer with correct pixel center handling
I tile stride approach instead of all tiles (32px)
I pixel alpha transfers (RLE) ⇒ adaptive approach

All lot more ...

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 14 / 28

https://github.com/bourgesl/

MapBench benchmarks

MapBench tool:
I a multi-threaded java2d benchmark that replays serialized graphics

commands (see ShapeDumperGraphics2D)
I calibration & warmup phase at startup + correct statistics [min,

median, average, 95th percentile, max]

Procedure:

disable HyperThreading (in BIOS)

use fixed cpu frequencies (2GHz) on my laptop (i7 4800)

setup the jvm: jdk to use + basic jvm settings = CMS gc 2Gb Heap

use a profile (shared images) to reduce GC overhead

⇒ Reduce variability (and cpu affinity issues)

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 15 / 28

https://github.com/bourgesl/

Before Marlin

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 16 / 28

https://github.com/bourgesl/

With Marlin

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 17 / 28

https://github.com/bourgesl/

Performance summary

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 18 / 28

https://github.com/bourgesl/

VolatileImage issue

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 19 / 28

https://github.com/bourgesl/

How to use Marlin ?

See:
https://github.com/bourgesl/marlin-renderer/wiki/How-to-use

Just download the latest Marlin release

Start your java program with:
I -Dsun.java2d.renderer=sun.java2d.marlin.MarlinRenderingEngine
I Oracle or Open JDK 1.7 or 1.8 needed

OR download any Oracle or Open JDK9 EA builds
I https://jdk9.java.net/

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 20 / 28

https://github.com/bourgesl/marlin-renderer/wiki/How-to-use
https://github.com/bourgesl/marlin-renderer/releases/
https://jdk9.java.net/
https://github.com/bourgesl/

Demo

Here is a demo comparing OpenJDK Pisces vs Marlin on intensive
rendering tasks (based on MapBench) = MapDemo class !

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 21 / 28

https://github.com/bourgesl/

Demo Performance summary

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 22 / 28

https://github.com/bourgesl/

Marlin renderer tuning

Marlin can be customized by using system properties:

adjust subpixel sampling:
I X/Y=3: [8x8] (by default)
I smaller values are faster but less accurate
I higher values are slower but more accurate

pixel sizing: typical largest shape width / height (2048 by default)

adjust tile size: 6 [64x64] seems better than 5 [32x32]

Debugging:

log statistics to know what happens

enable checks if segfault or artefacts !

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 23 / 28

https://github.com/bourgesl/

Marlin System properties

System property values description

sun.java2d.renderer.useThreadLocal true - false RdrCtx in TL or CLQ (false)
sun.java2d.renderer.useRef soft - weak - hard Reference type to RdrCtx

sun.java2d.renderer.pixelsize 2048 in [64-32K] Typical shape W/H in pixels
sun.java2d.renderer.subPixel log2 X 3 in [1-8] Subpixel count on X axis
sun.java2d.renderer.subPixel log2 Y 3 in [1-8] Subpixel count in Y axis
sun.java2d.renderer.tileSize log2 5 in [3-8] Pixel width/height for tiles

sun.java2d.renderer.doStats true - false Log rendering statistics
sun.java2d.renderer.doChecks true - false Perform array checks
sun.java2d.renderer.useLogger true - false Use j.u.l.Logger

Log2 for subpixel & tile sizes:

subPixel = 3 means 8x8

tileSize = 5 means 32x32

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 24 / 28

https://github.com/bourgesl/

Future work

I may have still spare time to improve Marlin...

But your help is needed:

try your applications & use cases with Marlin

contribute: let’s implement new algorithms (gamma correction,
clipping ...)

provide feedback, please !

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 25 / 28

https://github.com/bourgesl/

Quality Ideas

NaN / Overflow handling

Higher precision maths: double vs float in Dasher / Stroker maths
and affine transforms

Handle properly the gamma correction: (MaskFill C macros)
I very important for visual quality
I note: stroke width must compensate the gamma correction to avoid

having thin shapes.

Analytical pixel coverage: using signed area coverage for a trapezoid
⇒ compute the exact pixel area covered by the polygon

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 26 / 28

https://github.com/bourgesl/

Performance ideas

Clipping:
I implement early efficient path clipping (major impact on dashes)
I take care of affine transforms (margin, not always rectangle)

Cap & join processing (Stroker):
I do not emit extra collinear points for squared cap & miter joins
I improve Polygon Simplifier ?

Scanline processing (8x8 subpixels):
I 8 scanlines per pixel row ⇒ compute exact area covered in 1 row
I see algorithmic approach (AGG like):

http://nothings.org/gamedev/rasterize/
I may be almost as fast but a lot more precise !

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 27 / 28

http://nothings.org/gamedev/rasterize/
https://github.com/bourgesl/

That’s all folks !

Please ask your questions

or send them to marlin-renderer@googlegroups.com

Special thanks to:

Andréa Aimé (GeoServer)

Benjamin Ducke (gvSIG CE)

OpenJDK teams for their help, reviews & support:
I Jim Graham & Phil Race (java2d)
I Mario Torre & Dalibor Topic
I Mark Reinhold (openjdk 9)

ALL Marlin users

Laurent Bourgès (github.com/bourgesl) Marlin renderer FOSDEM 2016, Jan 30th 28 / 28

marlin-renderer@googlegroups.com
https://github.com/bourgesl/

	Context & History
	How Marlin works ?
	Marlin benchmarks
	How to use Marlin ?
	Demo
	Marlin renderer tuning
	Future work

